Mobility services that leverage on information and communication technologies (ICT) are changing the paradigm of travel. For example, app-based ride-hailing services have now mainstreamed dynamic pricing, pooling and biking incentives for commuting trips are being increasingly piloted through smartphones and bringing CO$_2$ tradable permits to personal vehicle usage is progressively becoming a necessity. These new and future smart mobility services will not only alter our travel patterns but also the allocation of fundamental transportation resources, both at the vehicle fleet and infrastructure levels. Subsequently, significant changes to VMT, parking, curbside usage, and network congestion are underway. However, inefficiency in transportation systems management is still an issue affecting millions of people every day and ICT-based solutions are yet to achieve their potential in the coordinated management of current infrastructure usage, especially in real-time.

Several control mechanisms have been proposed to tackle inefficiencies in congestion and vehicular emissions in real-time, such as dynamic pricing, incentives and, more recently, quantity control mechanisms such as tradable permits/credits schemes. All these have known deployment limitations and have yet to realize their theoretical benefits through ICT based mobility solutions. With smartphones being a point of information and communication for travelers and vehicles increasingly being equipped with sensing, communication and information features, the design and operation of these control mechanisms under an ICT based framework may finally bring realizable efficiency in a multi-modal, smart mobility paradigm. Evidence on the motivation, identification and deployment of integrated and coordinated control policies and operations of mobility services will help in closing the gap from theory to practice. This special session seeks to gather recent efforts in (1) policy and (2) system designs, (3) operation and (4) evaluation of innovative ICT based mobility management systems and to discuss the research needs for its successful deployment. Theoretical and empirical research within (but not restrict to) the following topics are welcome to this special session:

- Integrated vs. stand-alone mobility services
- Real-time congestion, vehicular energy and emissions management
- Multi-modal network optimization mechanisms
- Real-time coordination management systems for urban logistics
- Dynamic pricing
- Tradable permit/credit schemes
- Incentives optimization and efficient allocation
- Personalization of mobility services

Expected number of manuscripts: 20-25

Contact details (institutional address, phone, e-mail):

- **Carlos Lima Azevedo**, Department of Management Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; Phone: +45 452 51545; E-mail: climaz@dtu.dk
- **Meng Xu**, State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China; Phone: +86 10 51687070; E-mail: mengxu@bjtu.edu.cn
Shor bio of organizers:

Carlos Lima Azevedo is an Associate Professor in the Department of Management Engineering, Technical University of Denmark (DTU) and a Research Affiliate of the ITS Lab at the Massachusetts Institute of Technology. Prior to join DTU, he was a Research Scientist and the Executive Director of the Transportation Education Committee at MIT. In his earlier research career he was a Senior Postdoctoral associate at the Singapore-MIT Alliance for Research and Technology and a Research Scholar at the Portuguese National Laboratory for Civil Engineering. He has a PhD (2014) in Transportation Systems, a MSc (2008) from IST-Lisbon. He is expert in development of new models and simulation techniques for smart mobility design and assessment. Previous research includes the development and application of large-scale agent-based urban simulation, its application for the design and evaluation of new mobility management solutions such as shared automated vehicles on-demand and personalized real-time incentive systems; individual behavior experiments and preferences modeling towards new mobility solutions; methods for the calibration and validation of simulation tools and innovative road safety assessment models without accident data.

Meng Xu is currently a full Professor of the State Key Laboratory of Rail Traffic Control and Safety and the Institute of Transportation System Science and Engineering (TSSE) at Beijing Jiaotong University (BJTU). He was educated at the Northwestern Polytechnical University of China at Xi’an, where he was awarded the MS and PhD degrees in Computation Mathematics and Traffic Engineering in 2003 and 2005 respectively. Before joining BJTU, he was a Postdoctoral Research Associate at the Utah State University, USA. The major portion of his research focuses on transport policy analysis, transport and land use studies, modeling and analysis of transportation systems, network equilibrium models and solution algorithm development, and large-scale traffic data sets analysis. He was awarded the DAAD Scholarship in 2010, the program for New Century Excellent Talents in University of China in 2011 (issued by the Ministry of Education of China), the EU Marie Curie International Incoming Fellowship in 2012, and the prestigious Excellent Young Scientist Programme in 2014 (funded by the National Natural Science Foundation of China (NSFC)). He have published over one hundred papers with 30 different co-authors in different academic journals, and is member of several scientific committees for international conferences and member of editorial boards on international ISI journals.

Arun Prakash Akkinepally is a Researcher Scientist at Intelligent Transportation Systems Lab at MIT. He earned his Ph.D. in Transportation Engineering in 2016 and B.Tech and M.Tech in Civil Engineering in 2010 from Indian Institute of Technology, Madras India. Prior to joining MIT, he was a postdoctoral associate at Singapore-MIT Alliance for Research and Technology, Singapore. His research and professional interests include network modelling, travel simulation, travel behavior, and future of urban mobility.

Ravi Seshadri is a Research Scientist at the Singapore-MIT Alliance for Research and Technology. He completed his undergraduate, Masters and PhD degrees in Civil Engineering from the Indian Institute of Technology Madras. His research interests include agent-based simulation, smart mobility, dynamic traffic
assignment and transportation network modeling. He is the lead PI for a study titled “Autonomous Mobility-on-Demand Systems Impact on Transportation in Singapore” in collaboration with the Ministry of Transport (MOT), Urban Redevelopment Authority (URA), Land Transport Authority (LTA) and funded by the Ministry of National Development in Singapore.

Bilge Atasoy is an Assistant Professor in the Transport Engineering and Logistics section of the Department of Maritime and Transport Technology at TU Delft. Prior to joining TU Delft, Bilge worked as a research scientist at MIT, with Prof. Moshe Ben-Akiva in the ITS Lab. She managed research projects in the areas of real-time optimization, travel behavior and choice-based optimization with applications to Smart Mobility. She received her PhD from EPFL in 2013 where she was working with Prof. Michel Bierlaire. Her major is in Industrial Engineering with BSc and MSc degrees from Bogazici University, Istanbul in 2007 and 2009, respectively. Her research interests focus on the development of optimization and behavioural models for transport and logistics applications in order to increase the efficiency, sustainability and robustness of such systems.